Practice Midterm 1-solutions
 No homework for the next week. Remember, the First exam will be on Wednesday, February 18 during the regular class time.

February 13, 2015

1 Problem 1. True or False.

Solution:

1. a. False.
2. b. False.
3. c. False.
4. d. True.
5. e. True.

2 Problem 2. Matrix multiplication.

Solution:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & 1 & 5 & 1 \\
1 & 2 & -3 & 0 \\
1 & -1 & 3 & -1 \\
9 & 7 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
5 \\
8
\end{array}\right]=\left[\begin{array}{c}
34 \\
-11 \\
8 \\
41
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
4 & 1 & 0 & 1 & 0 \\
1 & 0 & 2 & 1 & 0 \\
0 & 0 & 1 & 1 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 3 \\
1 & 3 \\
1 & 3 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
10 & 10 \\
5 & 10 \\
2 & 6
\end{array}\right]}
\end{aligned}
$$

3 Problem 3. Gauss-Jordan Approach.

Solution:

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 2 & 2 & 0 & 1 & 0 \\
1 & 2 & 3 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 1 & 2 & -1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right] \rightarrow
$$

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 2 & -1 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & 2 & -1 & 0 \\
0 & 1 & 0 & -1 & 2 & -1 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right] \Longrightarrow A^{-1}=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

4 Problem 4. Column Space and Null Space.

Solution: Since all columns are dependant, the column space is 1-dimensional:

$$
C(A)=\lambda\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \forall \lambda \in \mathbb{R}
$$

In order to find the null space of A, we solve the equation $A x=0$. Since we have to solve $A x=b$ we work with the augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$. Elimination gives

$$
\left[\begin{array}{llll}
2 & 1 & 3 & 1 \\
6 & 3 & 9 & 3 \\
4 & 2 & 6 & 2
\end{array}\right] \text { elimination } \Longrightarrow\left[\begin{array}{llll}
2 & 1 & 3 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

The $\operatorname{rank}(A)=\operatorname{rank}\left(\left[\begin{array}{ll}A & b\end{array}\right]\right)=1$. For $A x=0$ we have one equation $2 x+y+3 z=0$ and two free variables, y, z. Consequently we have two special solutions:

1. $y=1, z=0$ then $x=-\frac{1}{2}$
2. $y=0, z=1$ then $x=-\frac{3}{2}$.

The null space $N(A)$ is spanned by these special solutions:

$$
N(A)=\alpha\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]+\beta\left[\begin{array}{c}
-\frac{3}{2} \\
0 \\
1
\end{array}\right], \quad \alpha, \beta \in \mathbb{R}
$$

Next, we have $\operatorname{rank}(A)=\operatorname{rank}\left(\left[\begin{array}{ll}A & b\end{array}\right]\right)=1$. Therefore $A x=b$ is solvable. To solve the equation $A x=b$ we need one particular solution.

For $A x=b$ we have one equation $2 x+y+3 z=1$. A particular solution is $x=0, y=1, z=0$.

To get a complete solution to $A x=b$ we add this particular solution to the null space:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\alpha\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]+\beta\left[\begin{array}{c}
-\frac{3}{2} \\
0 \\
1
\end{array}\right], \quad \alpha, \beta \in \mathbb{R} .
$$

5 Problem 5. Column Space and Null Space.

5.1 Define the column, row and the null spaces of the matrix A.

Solution:

Definition: Column Space is the vector space spanned by all columns of A. If we assume A has n columns which are denoted by $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}} \cdots, \boldsymbol{v}_{\boldsymbol{n}}$, then

$$
C(A)=\left\{\sum_{i=1}^{n} c_{i} \boldsymbol{v}_{\boldsymbol{i}} \mid \forall c_{i} \in \mathbb{R}, i=1,2, \cdots, n\right\}
$$

Definition: Row Space is the vector space spanned by all rows of A. If we assume A has m rows which are denoted by $\boldsymbol{u}_{\boldsymbol{1}}, \boldsymbol{u}_{\boldsymbol{2}} \cdots, \boldsymbol{u}_{\boldsymbol{m}}$, then

$$
\operatorname{Row}(A)=C\left(A^{T}\right)=\left\{\sum_{i=1}^{m} c_{i} \boldsymbol{u}_{\boldsymbol{i}} \mid \forall c_{i} \in \mathbb{R}, i=1,2, \cdots, m\right\}
$$

Definition: Null Space is the vector space spanned by all solutions of $A x=0$, which is:

$$
\operatorname{Null}(A)=\{x \mid A x=0\}
$$

5.2 Find basis of column, row and null space of A.

Solution:

We do (Gauss-Jordan) elimination to find pivot columns and pivot rows of A. These will give a basis of $C(A)$ and $C\left(A^{T}\right)$. We have:

$$
A=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \Longrightarrow\left[\begin{array}{ccccc}
0 & 1 & 2 & 0 & -2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The second and the fourth columns are the pivot columns. So the basis of $C(A)$ form the second and the fourth columns of A :

$$
C(A)=\alpha\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\beta\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right], \quad \alpha, \beta \in \mathbb{R}
$$

A basis of $C\left(A^{T}\right)$ form the first and the second row of R :

$$
C\left(A^{T}\right)=\alpha[0,1,2,0,-2]+\beta[0,0,0,1,2], \quad \alpha, \beta \in \mathbb{R}
$$

In order to find the basis of the null space $N(A)$, we solve the equation $A x=0$. Using the (Gauss-Jordan) elimination above, we have

$$
A x=0 \Longrightarrow\left[\begin{array}{ccccc}
0 & 1 & 2 & 0 & -2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The $\operatorname{rank}(A)=2$, the pivot variables are x_{2}, x_{4} and we have
(The number of columns) $-\operatorname{rank}(A)=\operatorname{dim}(N(A))=5-2=3$. So, we have 3 free variables, x_{1}, x_{3}, x_{5}.

We have 2 equations:

$$
\left\{\begin{array} { l }
{ x _ { 2 } + 2 x _ { 3 } - 2 x _ { 5 } = 0 } \\
{ x _ { 4 } + 2 x _ { 5 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x_{2}=-2 x_{3}+2 x_{5} \\
x_{4}=-2 x_{5}
\end{array}\right.\right.
$$

We write three special solutions which form a basis of $N(A)$:

1. $x_{1}=1, x_{3}=0, x_{5}=0, \Longrightarrow x_{2}=0, x_{4}=0$
2. $x_{1}=0, x_{3}=1, x_{5}=0, \Longrightarrow x_{2}=-2, x_{4}=0$
3. $x_{1}=0, x_{3}=0, x_{5}=1, \Longrightarrow x_{2}=2, x_{4}=-2$

A basis of $N(A)$ is:

$$
N(A)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
2 \\
0 \\
-2 \\
1
\end{array}\right]\right\}
$$

